1,205 research outputs found

    Can you trust what you hear? Concurrent misinformation affects recall memory and judgments of guilt.

    Get PDF
    n most misinformation studies, participants are exposed to a to-be-remembered event, and then subsequently given misinformation in textual form. This misinformation impacts on people’s ability to accurately report the initial event. In this paper, we present two experiments that explored a different approach to presenting misinformation. In the context of a murder suspect, the to-be-remembered event was audio of a police interview, whilst the misinformation was co-presented as subtitles with some words being different to, and more incriminating than, those that were actually said. We refer to this as concurrent misinformation. In Experiment 1, concurrent misinformation was inappropriately reported in a cued-recall test, and inflated participants’ ratings of how incriminating the audio was. Experiment 2 attempted to employ warnings to mitigate the influence of concurrent misinformation. Warnings after the to-be-remembered event had no effect, whilst warnings before the event reduced the effect of concurrent misinformation for a sub-set of participants. Participants that noticed the discrepancy between the audio and the sub-titles were also less likely to judge the audio as incriminating. These results were considered in relation to existing theories underlying the misinformation effect, as well as the implication for the use of audio and text in applied contexts

    The dependence of global super-rotation on planetary rotation rate

    Full text link
    An atmosphere may be described as globally super-rotating if its total zonal angular momentum exceeds that associated with solid-body co-rotation with the underlying planet. In this paper, we discuss the dependence of global super-rotation in terrestrial atmospheres on planetary rotation rate. This dependence is revealed through analysis of global super-rotation in idealised General Circulation Model experiments with time-independent axisymmetric forcing, compared with estimates for global super-rotation in Solar System atmospheres. Axisymmetric and three-dimensional experiments are conducted. We find that the degree of global super-rotation in the three-dimensional experiments is closely related to that of the axisymmetric experiments, with some differences in detail. A scaling theory for global super-rotation in an axisymmetric atmosphere is derived from the Held-Hou model. At high rotation rate, our numerical experiments inhabit a regime where global super-rotation scales geostrophically, and we suggest that the Earth and Mars occupy this regime. At low rotation rate, our experiments occupy a regime determined by angular momentum conservation, where global super-rotation is independent of rotation rate. Global super-rotation in our experiments saturates at a value significantly lower than that achieved in the atmospheres of Venus and Titan, which instead occupy a regime where global super-rotation scales cyclostrophically. This regime can only be accessed when eddy induced up-gradient angular momentum transport is sufficiently large, which is not the case in our idealised numerical experiments. We suggest that the 'default' regime for a slowly rotating planet is the angular momentum conserving regime, characterised by mild global (and local) superrotation.Comment: Submitted to Journal of the Atmospheric Sciences. Comments welcome. This manuscript has not yet been peer reviewe

    Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER

    Get PDF
    Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway

    Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    Get PDF
    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications

    A High-power Electric Propulsion Test Platform in Space

    Get PDF
    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment

    Drug-responsive autism phenotypes in the 16p11.2 deletion mouse model: a central role for gene-environment interactions

    Get PDF
    There are no current treatments for autism, despite its high prevalence. Deletions of chromosome 16p11.2 dramatically increase risk for autism, suggesting that mice with an equivalent genetic rearrangement may offer a valuable model for the testing of novel classes of therapeutic drug. 16p11.2 deletion (16p11.2 DEL) mice and wild-type controls were assessed using an ethological approach, with 24 h monitoring of activity and social interaction of groups of mice in a home-cage environment. The ability of the excitation/inhibition modulator N-acetyl cysteine (NAC) and the 5-HT1B/1D/1F receptor agonist eletriptan to normalise the behavioural deficits observed was tested. 16p11.2 DEL mice exhibited largely normal behaviours, but, following the stress of an injection, showed hyperlocomotion, reduced sociability, and a strong anxiolytic phenotype. The hyperactivity and reduced sociability, but not the suppressed anxiety, were effectively attenuated by both NAC and eletriptan. The data suggest that 16p11.2 DEL mice show an autism-relevant phenotype that becomes overt after an acute stressor, emphasising the importance of gene-environmental interactions in phenotypic analysis. Further, they add to an emerging view that NAC, or 5-HT1B/1D/1F receptor agonist treatment, may be a promising strategy for further investigation as a future treatment

    Supplementary data and analysis for estimating walleye selectivity

    Get PDF
    This document has been issued as VIMS Data Report 61 and provides data tables and results of exploratory analyses conducted as part of the complete data analysis for Myers et al. 2014 published in the Transactions of the American Fisheries Society. Estimates of size- and sex-specific selectivity of fishing gear are important for making informed management decisions. We distinguish between capture selectivity – the relative catchability of the components of the population – and harvest selectivity, which is the combined effects of capture selectivity and the decision to retain or release a fish of a given population component. We used short-term recaptures from three extensive tagging programs in Minnesota and Wisconsin to estimate directly the size- and sex- specific selectivity of angling for captured and for harvested walleye Sander vitreus, and of spear fishing for harvested walleye. Estimates were obtained using generalized linear models with an information-theoretic approach to determining the significance of individual and interactive effects of length and sex on selectivity. The primary conclusions of this research are presented in Myers et al. 2014. Residual analyses for the models presented in the manuscript, results of unpublished exploratory analyses, and the complete data set used to conduct the analyses are presented in this supplementary document. Through this data report, interested readers can repeat the analyses conducted in Myers et al. 2014, as well as see the results of additional analyses not presented in the primary publication

    The Effect of 400 µg Inhaled Salbutamol on 3 km Time Trial Performance in a Low Humidity Environment

    Get PDF
    The Objectives of the study were to investigate whether 400 µg inhaled salbutamol influences 3 km running time-trial performance and lung function in eucapnic voluntary hyperpnoea positive (EVH+ve) and negative (EVH-ve) individuals. Fourteen male participants (22.4 ± 1.6yrs; 76.4 ± 8.7kg; 1.80 ± 0.07 m); (7 EVH+ve; 7 EVH-ve) were recruited following written informed consent. All participants undertook an EVH challenge to identify either EVH+ve (?FEV1>10%) or EVH-ve (?FEV110% from baseline) in FEV1 following any time-trial. Administration of 400µg inhaled salbutamol does not improve 3 km time-trial performance in either mild EVH+ve or EVH–ve individuals despite significantly increased HR and FEV1

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition
    corecore